Adaptation sur des espaces de Besov en estimation de la densité sous contrainte de confidentialité locale [ANNULÉ]

We address the problem of non-parametric density estimation under the additional constraint that only privatised data are allowed to be published and available for inference. For this purpose, we adopt a recent generalisation of classical minimax theory to the framework of local α-differential privacy and provide a lower bound on the rate of convergence over Besov spaces under mean integrated Lr-risk. This lower bound is deteriorated compared to the standard setup without privacy, but reveals a similar elbow effect. In order to fulfil the privacy requirement, we suggest adding suitably scaled Laplace noise to empirical wavelet coefficients. Upper bounds within (at most) a logarithmic factor are derived under the assumption that α stays bounded n increases: A linear but non-adaptive wavelet estimator is shown to attain the lower bound whenever p≥r but provides a slower rate of convergence otherwise. An adaptive non-linear wavelet estimator with appropriately chosen smoothing parameters and thresholding is shown to attain the lower bound within a logarithmic factor for all cases.