Conditions géométriques pour la contrôlabilité d'équations aux dérivées partielles linéaires
Le sujet de cette thèse a trait à la recherche de conditions géométriques pour la contrôlabilité d'équations aux dérivées partielles linéaires posées sur l'espace euclidien. Dans une première partie, nous étudions des équations purement diffusives, telles que les équations de la chaleur fractionnaires, et mettons en exergue l'importance de la condition d'épaisseur pour assurer leur contrôlabilité. Une seconde partie est consacrée à la contrôlabilité d'équations d'évolution dont les systèmes adjoints régularisent dans des espaces de Gelfand-Shilov, comme les équations d'évolution associées à l'oscillateur harmonique ou à des opérateurs de Shubin anisotropes. Ces résultats sont obtenus en établissant de nouvelles inégalités spectrales pour des combinaisons linéaires finies de fonctions de Hermite et de nouveaux principes d'incertitude s'appliquant dans des espaces de Gelfand-Shilov généraux. Les équations de Schrödinger libre et harmonique sont également étudiées et des conditions géométriques nécessaires et suffisantes pour leur contrôlabilité sont données.