Constructing all genus 2 curves with supersingular Jacobian

F. Oort showed that the moduli space of principally polarized supersingular abelian surfaces is a union of rational curves. This is proven by showing that every principally polarized supersingular abelian surface is the jacobian of a fibre of one of the families of genus 2 curves $\pi: \mathcal{C}\rightarrow \mathbb{P}^1$ constructed by L. Moret-Bailly. We present an algorithm that makes this construction effective: Given a point $x\in \mathbb{P}^1$ we compute a hyperelliptic model of the fibre $\pi^{-1}(x)$. The algorithm uses Mumford's theory of theta groups to compute quotients by the group scheme $\alpha_p$.